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It is known experimentally that laminar circular Couette flow between two con- 
centric circular cylinders, the outer of which is fixed, becomes unstable when the 
speed of the inner cylinder is high enough, The flow is then replaced by a new cir- 
cumferential flow with superimposed toroidal (or Taylor) vortices spaced periodic- 
ally along the axis. At a higher speed still the new flow develops another insta- 
bility, and is replaced by a flow in which the axially periodic vortices are simul- 
taneously periodic travelling waves in the azimuth. 

In  the present paper an attack is made on the problem of instability of the 
Taylor-vortex flow against perturbations which are periodic both in the axial and 
azimuthal co-ordinates and, moreover, travel with some phase velocity in the 
latter. Subject to a number of assumptions and approximations, which are de- 
tailed in the paper, it  is found that the Taylor-vortex flow is stable against per- 
turbations with the same axial wavelength and phase, but unstable against per- 
turbations differing in phase by 4s.. After instability the new flow no longer has 
planes separating neighbouring vortices, but has wavy surfaces travelling in the 
azimuth. This feature is in accord with much (though not all) of the experi- 
mental evidence. 

The critical Taylor number (proportional to the square of the speed) at  which 
the Taylor vortices become unstable is found theoretically to be about 8 % above 
the value for which Taylor vortices first appear. This must be compared with a 
value in the range 5-20% for the experiments which our work models most 
closely. The azimuthal wave-number given a slight preference by theory is 1, in 
agreement with those experiments. 

1. Introduction 
Taylor (1923) in his classic paper showed both theoretically and experimentally 

that the laminar circumferential flow (Couette flow) between concentric rotating 
cylinders becomes unstable if the speed of the inner cylinder is increased beyond 
a certain critical value. He observed that the instability yielded a steady second- 
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ary motion in the form of toroidal vortices (Taylor vortices) spaced regularly 
along the axis of the cylinders. Theoretically, the critical speed can be predicted 
by considering the linearized problem for the stability of Couette flow with re- 
spect to axisymmetric disturbances. This leads to an eigenvalue problem for the 
Taylor number T (based on the speed of the inner cylinder) which is a function of 
the parameters p = Q2,/Ql and = R,/R, describing the basic velocity and 
geometry up to scale factors, and the dimensionless axial wave-number h of the 
disturbance. Here Ql, Q2 and R,, R, are the angular velocities and radii of the 
inner and outer cylinders respectively. 

Since Taylor’s original work, there has developed a considerable body of litera- 
ture dealing with the mathematical eigenvalue problem and with experimental 
measurements of the transition boundary. Much of this work, including generaliz- 
ations of the Taylor stability problem, is discussed by Chandrasekhar (1961); 
also see a brief survey paper by Di Prima (1963). It is probably safe to say that 
both experimentally and theoretically the transition boundary from Couette 
flow to Taylor-vortex flow and the dependence of the critical Taylor number on 
the parameters p and 7 is well understood. A note of caution is necessary, how- 
ever, as recently Krueger, Gross & Di Prima (1966) have shown that for ,IL < - l 
approximately, and, for a wide range of values of 7, non-axisymmetric disturb- 
ances become unstable at  Taylor numbers slightly lower than the critical Taylor 
number for axisymmetric disturbances. Apparently the instability leads to a 
weak spiral vortex motion as observed by Coles (1965, p. 399) and Snyder & 
Karlsson (1965). 

In  the present paper we will be concerned with the development of finite 
amplitude motions for T > T,, where T, is the critical value o f T  at  which Couette 
flow becomes unstable. Further, we shall restrict our attention to the case in 
which the cylinders (supposed infinitely long) rotate in the same direction or in 
which the outer cylinder is at  rest (p 3 0)’ and the gap between the cylinders is 
small compared to a typical radius (7 -+ 1). According to linear theory, when the 
basic flow is unstable the disturbance grows exponentially with time for T > T,. 
However, as Taylor observed, it is known that a definite equilibrium vortex 
motion is attained. Moreover, the circulation in the vortices is a function of 
T - T,. According to Taylor, ‘A moderate increase in the speed of the apparatus 
merely increased the vigour of the circulation in the vortices without altering 
appreciably their spacing or position, but a large increase caused the symmetrical 
motion to break down into some kind of turbulent motion. . . ’. 

In addition to  Taylor’s work, Coles (1960, 1965)’ Schwarz, Springett & Don- 
nelly (1964), Nissan, Nardacci & Ho (1963)) and Schultz-Grunow & Hein (1956) 
have made experimental observations of Taylor vortices for T increasing beyond 
T, for the case ,LL 3 0. Their observations appear to confirm Taylor’s observations 
for moderate values of T > T,. On the other hand, for T sufficiently large, the 
vortices assume a wavy form in the circumferential direction and have a certain 
wave velocity in that direction. With increasing speed different wavy motions 
develop, until at  considerably higher speeds small irregularities begin to appear 
and the flow becomes turbulent. 

A particularly comprehensive and brilliant account of the flow development in 
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one apparatus (with 7 = 0.88, ,u = 0) has been given by Coles (1965). While his 
apparatus had a small length-to-gap ratio, being able to accommodate only 30 
Taylor vortices compared with G. I. Taylor’s 400, it  is still pertinent to summar- 
ize briefly his observations. Let a given flow be denoted by mln where m is the 
number of Taylor vortices and n is the number of azimuthal waves. Then Coles 
found at a rising sequence of quite definite (and repeatable) speeds of the inner 
cylinders the sequence of states 2810 (Taylor vortices), 2814 (wavy vortices at  
about 1.5%)) 2415, 2215, 2216,. . . In  all cases for which n + 0, the boundaries 
between neighbouring cells were wavy. The angular wave speed was about equal 
to the average angular velocity between the cylinders at  the first appearance of 
the wavy vortices, but decreased with increasing speed to about 0.34 of the inner 
cylinder’s angular velocity. In  addition, he observed that in the range of speeds 
for which doubly-periodic flows were possible, different states of motion could be 
attained at  the same final speed-the state depending upon the manner in which 
the final speed was reached. In  Coles’ words, ‘the experimental fact is that the 
steady Couette flow of a given fluid in a given apparatus is not uniquely deter- 
mined by the speed of rotation. . . ’. 

While Coles observed the transition from Taylor-vortex flow to wavy-vortex 
flow to be a 2810 to 2814 transition, Schwarz et al. (1964) using an apparatus which 
could accommodate approximately 260 Taylor cells (7 = 0.95, ,u = 0) have 
apparently observed a transition to a non-axisymmetric mode with azimuthal 
wave-number 1 at a Taylor number 3-8 yo above critical. The mode appeared to 
be a subtle modification of the Taylor-vortex mode and moved with an angular 
velocity nearly equal to the average angular velocity of the basic flow. In  addi- 
tion, the mode a,ppeared to have a regular vortex spacing in the axial direction 
with planes, perpendicular to the axis and separating neighbouring vortices, on 
which the axial component of velocity vanished. No stable modes of this type, 
exp [i(nt6’- wt ) ] ,  for m > 1 were observed. As T was increased the circulation 
in the m = 1 mode grew more vigorous and the axial form became more distorted 
with the vortex spacing sinusoidal in time. This evolution took place over a range 
of T but, as explained by Schwarz et al., at a T of about 20 yo above T, appeared 
to be complete, in the sense that it had a form which could definitely be described 
as of wavy-vortex type. 

In  recent years attempts have been made to compute the Taylor-vortex mo- 
tion. An energy balance integral method has been used (Stuart 1958) which takes 
account of the distortion of the mean motion by the disturbance, and gives a 
finite non-zero equilibrium amplitude for the secondary circulation in the vortices. 
Following this work an expansion procedure (Stuart 1960; Watson 1960) has 
been used (Davey 1962) to compute the amplitude and form of the Taylor- 
vortex motion for a range of speeds above critical. This analysis is valid to second- 
order terms in the amplitude (though it involves consideration of third-order 
terms), and takes account of the distortion of the mean motion, of the generation 
of the first harmonic of the fundamental, and of the spatial distortion of the 
fundamental. Good agreement with experimentally-measured torque data, 
particularly for T near T,, is found in both analyses. It is indicated in the later 
paper (Davey 1962) why the energy-balance method is so effective at equilibrium. 

2-2 
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In the above work it is assumed that the wavelength of the vortices in the axial 
direction is the same as that predicted by linear theory. Even though it is found 
experimentally that the variation of wavelength with increasing T is not large 
(Donnelly & Schwarz 1965), it has been suggested by Meyer (1966) that a suit- 
ably chosen variation of wavelength may lead to better agreement with experi- 
ment. He has carried out an extensive numerical calculation of the Taylor- 
vortex flow using a time-dependent finite difference procedure, and has found 
agreement with Davey 's calculations for the fixed wave-number predicted by 
linear theory. But by suitably varying the wave-number as T increased, he could 
obtain agreement with the experimental torque data over a much wider range 
than obtained by Davey (1962) in the small-gap case. However, the required 
variation in wavelength was much larger than observed experimentally. Meyer 
also suggested that a possible mechanism for the transition from Taylor-vortex 
flow to wavy-vortex flow is a shear instability of the circumferential velocity 
profile which has a large variation between neighbouring cells. This suggestion 
will be discussed in 0 6. These regions of high shear in the circumferential velocity 
at the boundaries of neighbouring cells have also been noted experimentally by 
Snyder & Lambert (1966). Finite difference procedures for computing the 
Taylor-vortex motion have also been considered by Capriz, Ghelardoni & Lorn- 
bardi (1964, 1966). 

In  our analysis of the growth of Taylor vortices and their instability, we shall 
consider the interaction of two axisymmetric disturbances of differential axial 
phases with two non-axisymmetric disturbances of different axial phases. Follow- 
a method described elsewhere (Stuart 1961), we derive a system of four non- 
linear equations for the amplitudes of the fundamental disturbances as functions 
of time. The coefficients in the amplitude equations are functions of the para- 
meters of the problem, namely (i) ,u and 7, which describe the laminar velocity 
and geometry; (ii) the axial and circumferential wave-numbers of the disturb- 
ance; and (iii) the Taylor number. These coefficients can be determined in a 
systematic manner by solving a set of linear ordinary differential equations. 
Possible equilibrium states of our mathematical model (the non-linear ampli- 
tude equations), the stability of the equilibrium states, and the transition 
from one equilibrium state to another as the Taylor number increases, will be 
discussed. 

The present model is sufficiently general to admit equilibrium solutions corre- 
sponding to the mode observed by Xchwarz ef al. (1964), and also the more com- 
plex wavy-vortex modes, and to give results concerning their stability. Finally, 
we mention that this work illustrates the concept of successive instabilities sug- 
gested by Landau (1944) in the sense that the model includes (i) a stability ana- 
lysis of the Taylor-vortex flow with respect to non-axisymmetric disturbances 
and (ii) the possible states of motion that might result from an instability of the 
Taylor-vortex flow. 

In  the next section the small-gap disturbance equations are derived. In  $ 3  a 
Fourier analysis of the disturbance and suitable expansions of the Fourier com- 
ponents in powers of the amplitudes of the four fundamental disturbances are 
discussed. Sections 4 and 5 deal with possible solutions of the non-linear amplitude 
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equations and their stability. Finally, in Q 6 we discuss the relevance of the theor- 
etical results to experimental observations; our conclusions are summarized in 
§ 7.  

2. The disturbance equations 
Let r ,  8, z denote cylindrical-polar co-ordinates, and let u,, u,, u, denote the 

components of velocity in the r,  8 and z directions respectively. Consider two 
infinitely-long concentric circular cylinders with the z axis as their common axis, 
with radii R, and R, ( >  R,), and rotating with angular velocities Ql and Q, re- 
spectively. The equations of motion for a viscous, incompressible fluid admit the 
exact steady solution 

u, = u, = 0, ug = V ( r )  = A r + ( B / r ) ,  (2.1) 

where A and B are constants chosen SO that (3.1) satisfies the boundary condi- 
tions at  r = R, and r = R,. In order to study the stability of this flow we super- 
impose a general disturbance on this basic solution and write, for example 

ug = V ( r )  + v’(r, 6 ,  z, t ) .  (3.2) 

Substituting in the Navier-Stokes equations of motion and in the equation of 
continuity (e.g. Whitham 1963), we obtain a system of four non-linear partial 
differential equations for v’ and for the perturbations u’, w‘ and p‘ in ur, uz, and 
the pressure respectively. 

In the present analysis we shall restrict our attention to the ‘small-gap’ 
case, in which the gap d = R,-R, is so small compared to the mean radius 
R, = J(R,  + R,) that terms O(d/R,) can be neglected. The derivation of the small- 
gap equations is essentially the same as for the classical Taylor problem except 
that now we must also consider terms involving differentiation with respect to 
the circumferential co-ordinate 8. The proper scaling for 6 has been discussed by 
Krueger (1962), by Bisshopp (1963) and by Krueger et al. (1966) in their analyses 
of the linear stability problem for non-axisymmetric disturbances. Briefly, the 
reasoning is as follows. Consider the second momentum equation 

-+--+...= v -+... ..., au, u , ~ u ,  
at r a6 (:: ) (3.3) 

where 11 is the kinematic viscosity. Letting Q, denote a reference angular velocity, 
and scaling t in units d2/v and Ug in units of R, Q,, we see that the second term in 
(2.3) is of apparent scale (Q,d2/v) as compared with the other terms in the equa- 
tion. Recalling that, for the classical Taylor problem in the limit d/R,+ 0, the 
dimensionless combination (Q,R,d/v) (d/R,)* is kept fixed,? we see that, if the 
second term in equation (2.3) is to be retained, then 8/86 must introduce a factor 
(R,/d)*. In that case (i2,d2/v)a/a6 has a scale (Q, R o d / v )  (d/R,)h, and the term must 
be retained. 

For the linear stability prob1e.m it is often convenient to obtain a single sixth- 
order equation for the circumferential perturbation velocity v‘, by using the con- 

t The appearance of (d/R,)* represents the curvature effect,. 
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tinuity equation, and the 8 and x momentum equations to eliminate w', p' and 
u' respectively. For the non-linear equations this is no longer possible. It is still 
convenient, however, to follow a similar procedure to obtain an equation whose 
linear part has the above form. At the same time we obtain subsidiary equations 
which relate u' and 10' to v' (the pressure need not concern us here). Letting 
d/R0+O with QiR0d3/v2 and u8/Qod2 fixed, we have 

1 
Lv-u, = - Pz, 

a 
au av aw 
ax a$ ay 
-- a-+- = 0. 

(2.4) i 
Here we have chosen Qo = $(a,+ Q2) = QIQ(l +p) where ,u = Q2/Ql, and have 
introduced the dimensionless variables and operators 

The parameter T is often called the Taylor number. Moreover 

au au au 
ax a$ ay 
av av av 

P2 = u- -av- +to- 
ax ad, ay> 
a ~ j  a~ alo 

P ,=u- -av -+ww.  
ax a+ ay 

Pl = u - - ~ v -  fw- -QaTv2 ,  

If the non-linear terms PI, P2 and P, are neglected, then equations (2.4) reduce, 
with slightly different notation, to the linearized equations for stability with 
respect to non-axisymmetric disturbances considered by Krueger et al. (1966). 
The choice of Qo = Ql &( 1 +p) is a convenient scale if the cylinders rotate in the 
same direction; however, if the cylinders rotate in the opposite direction, a more 
appropriate scale for Q ( r )  is 0,. In this case the only changes that are necessary 
in equations (2.4), (2.5) and (2.6) are the replacement of T, Q2,(x) and a by 
-4AQld4/i12, $(1 +p)  -ax and 1 --,u respectively. The choice of scale for u' and 
w' relative to v' is the natural choice from the equations of motion as indicated 
by Davey (1962). It should be emphasized that equations (2 .5 )  are small-gap 
equations, obtained from the full equations by letting dlRo+O with the inde- 
pendent variables x,  $, z, r ,  the dependent variables u, v, w, and the parametersp 
and T held fixed. 
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Finally, in deriving equations (2.4) it has been assumed that the components 
of the disturbance depend upon x .  For harmonic components which are inde- 
pendent of z, those equations are inconvenient and do not determine w. However, 
the equation for U J  separates from those for u and v and the system of equations 
(2.4) is conveniently replaced by the equivalent system 

with the understanding that a/a{ is to be set equal to  zero wherever it appears in 
the operator L and the expressions for Pz and P3. 

The requirement of no slip at the boundaries leads to the conditions 

u = v = w = 0 (2 .8 )  

at x = 4. Furthermore, equations (2.8) imply for the system (2.4) that 

at x = f 4; while for the system (2.7) we obtain only the first of equations (2.9). 

3. An expansion procedure 
For a given value of p < 1 the velocity distribution (2.1) is unstable? accord- 

ing to linear theory for Taylor numbers greater than a critical value T, which 
depends upon p. As mentioned earlier, for ,u 2 0 and T slightly greater than q, the 
instability leads to a new motion composed of toroidal vortices spaced regularly 
in the axial directions and superimposed on a circumferential motion. With 
increasing T this laminar motion becomes unstable, the second instability ap- 
parently leading to a ‘wavy ’ vortex motion. 

Consider, first, the linearized problem for the stability of Couette flow. The 
critical Taylor number occurs for an axisymmetric disturbance, so we look for a 
solution of the linearized equations corresponding to equations (2.4) of the form 
v(x, T ,  5) = f(x) cos A<. eaT. This leads to an eigenvalue problem for a(T,  p, A). 
The critical value of T and the corresponding critical value of A, A,, are deter- 
mined by the requirement that T, be the minimum value of T over all positive h 
for which there exists solutions with a = 0 but not a > 0. For p = 0 it is known 
(Davey 1962, p. 363), that 

T,  1694.95, A, 3.13. (3.1) 

For T > T, linear theory predicts that the Taylor-vortex disturbance will 
grow exponentially. In fact, however, as a disturbance of axial wave number A 

t For p > 1 it has been rigorously shown that Couette flow is stable to axisymmetric 
disturbances (see Chandrasekhar 1961, 0 70). A corresponding proof for non-axisymmetric 
disturbances has not yet been given. 
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grows, non-linear effects become important, altering the exponential growth so 
that an equilibrium state is attained. As described in the introduction, this non- 
linear problem has been studied by Stuart (1958) and Davey (1962) for T slightly 
greater than T,. 

Here, we shall extend this earlier work on the growth of the toroidal vortices 
by studying their instabilities and the form of motions consequent upon the 
instabilities. Thus we consider the interaction of a Taylor-vortex disturbance 
which is periodic in the axial direction only, with a non-axisymmetric disturb- 
ance, which is periodic in both the axial and the circumferential directions. Both 
disturbances are assumed to have the same axial wavelength 2nlh (the variation 
of h with T is slight in experiment for some range of T > T,, as shown by Donnelly 
& Schwarz 1965); however, to allow for phase shifts in the axial direction as the 
motions develop, we consider the interaction of modes proportional to cos he 
and to sin he.? Through the non-linear terms they interact and give rise to a mean 
velocity and to higher harmonics. 

The general Fourier series representation for a function which is periodic of 
period 2nlh in 5 and 2nlk in q5 is 

q=-w n= 1 
(3.2) 

where k is related to m of § 1 by k = mQ,,d2/v. Here the c or s subscript denotes 
whether the function is the coefficient of a cosine or sine; the first (n) and second 
( q )  number suffixes refer to the harmonics of the axial and azimuthal wavelengths 
respectively; and the coefficients corresponding to q negative are the complex 
conjugates of the corresponding coefficients for q positive.$ The terms 

vc1o(x, 7) cos h5, Vslo(x7 7) sin x - 9  (3.3) 

(3.4) 

which represent Taylor vortex-modes, and 

vcll(x, 7) cos he. eik6, vsll(x, T) sin hg. eik$, 

which represent non-axisymmetric modes, are the four fundamentals whose 
interaction we wish to consider. The additional terms in (3.2) represent harmonics 
and the mean-motion corrections, and arise from the interaction. 

When we substitute from equation (3.2) for v, together with similar expressions 
for u and P U ,  in the systems of equations (2.4) and (2.7) and separate out the vari- 
ous harmonics we obtain a system of infinitely-many partial differential equa- 
tions (coupled non-linearly) for the functions vclo(x, 71, uclo(x, 7), wclo(x, T) . . . . 
By using an expansion procedure devised by Watson (1960) and Stuart (1961), 
this system of coupled partial differential equations can be reduced to a system 
of linear ordinary differential equations which can be solved in succession. 

t For the Taylor-vortex mot,ion u and 'u are symmetric functions of 5 while to, by the 
continuity equation, is anti-symmetric ; consequently for that motion it was sufficient to 
use cosine and sine Fourier series respectively (see Davey 1962). 

T )  and vo0(z, T) are necessarily real, while the other terms in the 
series may be expected to be complex-valued. 

$ Thus z t c n O ( ~ ,  T ) ,  
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Briefly, the idea is as follows. Associated with the fundamental vclo(x, 7) cos A5 is 
an amplitude A,(r).  According to linear theory if we substitute 

we find A,(T) N exp [a , ,~];  hence, dA,/d.r = “,,Ac where a,,, the amplification 
rate, is positive for T > T,. Note that a,, depends upon p ,  h and T. With 
increasing A, this linear relation will cease to hold, the right-hand side of the 
equation for dA,/d.r being replaced by acOAc plus higher order terms. Similarly 
with uslo, vcll, vSl1 we associated the amplitudes A,, B,, B,, respectively. While A, 
and A ,  are real-valued functions of 7, B, and B, will in general be complex- 
valued functions. When the fundamentals interact they give rise to the first 
harmonics of the fundamentals and to a mean-motion correction. These effects 
are represented (to first order) by quadratic terms in A,, A,, B,, B,. In  turn, these 
terms react with the fundamentals and lead to distortions of the spatial form of 
the fundamentals and, moreover, force higher harmonics; such effects are re- 
presented by cubic terms in the A,, A,, B,, B,. The process cascades to higher 
amplitudes but, in a sense which will be discussed later, we may consider a 
termination of the series at  this stage. 

Thus we expand the velocities in suitable powers and products of the ampli- 
tudes A,(T), A,(T), Bc(7), B,(7), the coefficients being functions of x. Correspond- 
ingly, the amplitudes satisfy a system of four non-linear first-order ordinary 
differential equations. It is not difficult, though it is rather lengthy, to show that 
the correct expansions are as follows. 

v,,,(x, 7) = Ac(.)f,(4, 

The four fundamentals. 

(3.5) 

(3.6) 

i 
1 

%lO(X, 7) = A c f o  + @fl+ A,  4 f Z  + ACI BCI ” f 3  + A, I Bs I ” f 4  

~ , l O ( X ,  7) = A c f z ,  + . * - 7  

lJCll(X, 7) = w, + B,IB,I 2hl + B,IB,I Zh2 + B,A: h3 

+ A ,  B , & f ,  +A,B,B,f, + . . ., 

wslO(x, 7, = Acf30 f . . *. 

+ B,A: h, + B,A,A,h, + B, Bi h, + . . . , 
uc11(x,7) = B,hzo+-.., 

wSll(x, 7) = B, h30 + . . 
Here the f ’ s  and h’s are functions of x alone, and a tilde denotes a complex con- 
jugate. The expansions for wsl0, uslo, u’c10 and vsll, usll, well respectively, are the 
same as those just given with A,  and A ,  and B, and B, interchanged, and with the 
f’s replaced by g’s and the h’s replaced by 1’s. Notice that the leading terms in 
the expansions are first order in the amplitudes, and that the corrections are 
third order. 

The mean motion. 

} (3.7) 
~ , , ~ ( 5 , 7 )  = A:Fl+A:F8+ IBC(’F3+ (BJ2F4+ ..., 
w ~ ~ ( x , T )  = A , A , G ~ + B , ~ ’ , G ~ + ~ ~ B , G ~ +  ~ 0 0  f 0. 

The P’s and G’s are functions of x alone. The fact that uoo(x, 7) = 0 follows from 
the continuity equation and the boundary conditions. 
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The first harmonics. 

(3.8) I t+2o(x,7) = A:ml+A~m2+ IBc12m3+ IBsI2m4, 

vsz0(x, 7) = A, A, n, + B, B,n, + B,B,n3, 

vCz1(x,7) = ~,B,~l+A,B,r2,  vs21(r>7) = A,B,sl+A,B,s2. 

v ‘ c Z Z ( x ,  = B:pl + Bip2, 2 ) ~ 2 2 ( x ,  = B s q l ,  

The series have been truncated at  quadratic terms, and the functions m, n, p ,  q,  
r,  s depend on x only. The expansions for uC2,, u~,20 are the same as that for v,20 
with ml,. . . , m4 replaced by mZ1,.. . , ?nZ4 and m3,,. . . , m34, respectively. The expan- 
sions for uS2,, u)~~,,. . . , uSz1, u7c21 are determined similarly. In  addition, for the har- 
monic components which are independent of e, 

(3.9) i vo,(x,7) = A,B,t,+A,B,t,, voz(x77) = B:yl+B:Y,, 

u01(x,7) = AcBct21+AsBst22, u02(x ,7)  = B:Y21+BtY22, 
UJ,~(X,T) = A,B,z~+A,B,z~, wO2(x,7)  = BcBszs, 

to second order in amplitude. The functions t ,  y ,  x depend on x only. 

The amplitude equations. For the above expansions to be consistent with equa- 
tions (2.4) and (2.7), the amplitude functions A,(T), A,(T),  B,(T) and B,(T) must 
satisfy a system of ordinary non-linear differential equations of the form 

dA,/d.r = a,, A,  + a,, A: + ac2 A, A: + a,, A,IB,I + ac4AclBsl 
+ aC5 A, Be g ,  + ac6 A, 8, B, + . . . , 

+ b,, B,A,A, + b,,B,B? + .. .. 
(3.10) I dB,/d7 = b,,B, + b,, Be] B,I + b,,B,IB,I + be, B,A: + bC4B, A,2 

The equation for A, is similar to the equation for A, with the at's replaced by as’s 
and A, and A, and B, and B, interchanged; similarly the equation for B, is the 
same as that for B, with the be’s replaced by bs’s and A, and A, and B, and B, 
interchanged. The parameters a,,,. . . , a,,, a,,, . . . a,,, b,,,. . . , b,,, b,,,. . . b,, are func- 
tions of p ,  A, E ,  T .  They, as well as the functionsf,(x),. . . , z3(x), can be determined 
in a systematic manner, which we now discuss. 

Substituting the series expansions ( 3 . 2 )  and (3.5)-(3.9) for wcl0, uclo, u7,,,,..., 
wO2(x,7) in equations (2.4) and (2.7), using equations (3.10), and equating co- 
efficients of A,, A:, AEA,, etc., we obtain equations for the functions fo(x), 
f z 0 ( x ) ,  f 3 , ( x ) ,  fl(x), ..., z3 (x ) .  While it is not practicable to write out all of these 
equations, it is helpful to record a few of them in order to illustrate the method of 
solution. First, however, we define the following operators : 

N(h,  a,,, E )  = D2 - h2 - a,, - iIcQl(Ic), 
M ( h ,  a,,, k, T )  = N ( h ,  a,,, I c )  (D2 - h2)N(h, a,,, I c )  + h2Tfi2,(x). 

First-order terms. In  the equations for the coefficients of cos he, sin he, exp 
[iIc$] cos he, and exp [iIc$] sin he, we have respectively 

A,: “ A ,  a,,, O l f o  = 0, f 2 0  = w, a,,, 0)f,, f 3 0  = ---1Df20; (3.11) 

’ S :  M ( h 7  ‘)go = O ,  920 = N(h ,  a.$l), O)g07 g3CJ = A-1Dg20; (3.12) 

B,: M(h,b,o,k)hO = 0, h2, = N(h,b,O,Ic)h,, h,, = A-1(-Dh20+ikaho); (3.13) 

B,: M ( h ,  bsO, k)Z, = 0, I20 = N(h ,  bsO, I c ) Z o ,  I,, = h-1(DZ20-iIcaZo). (3.14) 
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From equations (3.6) and (3.13), with some simplifications, the boundary con- 
ditions associated with the equation for h, are 

h, = Dzh, = N(A, bcO, k)Dh, = 0 at x = & &. (3.15) 

The boundary conditions for Z,, go and fo are the same as (3.15) except for 1, 
replace b,, by b,,, for go replace b,, by a,, and set k = 0, for fo replace b,, by a,, 
and set k = 0. 

The homogeneous linear differential equation for f, with the associated homo- 
geneous boundary conditions determines an eigenvalue problem for a,, as a 
function of h, ,u and T ,  namely the linear stability problem for 

fl(x, 7 7  5)  = f O ( 4  exp rCLeo71 cos hC. 
The parameter a,, is clearly the amplification rate which is equal to or greater 
than zero for h = A, and T = T,  or T > T, respectively. The eigenvalue problem 
for a,, can be solved numerically for given values of ,u, h and T and the cor- 
responding eigenfunctionf,(x) tabulated, as has been done by Davey (1962) and 
Krueger et a.Z. (1966). Similarly, equations (3.12), (3.13) and (3.14) with the 
appropriate boundary conditions determine eigenvalues problems for aso(A, ,u7 T ) ,  
b,,(h, ,u, k, T )  and b,,(h, ,u, k, T) .  These eigenvalues and the corresponding eigen- 
functions can be computed numerically. For a given disturbance, i.e. given values 
of h and k,  and for fixed ,u and T, we are interested in the most highly amplified 
(or least damped) modes, that is, in the solutions of (3.1 1)-(3.14) corresponding 
to the largest eigenvalues a,, and aso, and the eigenvalues b,, and b,, with the 
largest real part? respectively. It is clear from equations (3.11)-(3.14) that the s 
and c eigenvalues and eigenfunctions (appropriately normalized) are related by 

(3.16) i a,, = a,, = a,, 

go = f O ,  920 = f 2 0 ,  930 = - f 3 0 ,  

I, = h,, 120 = h2,, I30 = - h30. 

b,, = b,, = b,, 

Xecond-order terms. In  addition to corrections to the mean flow, second-order 
terms arise from the following: 

cos 2Ac, sin 2h5, exp [i2k$] cos 2hc, exp [i2k$] sin 2h5, 

exp [ik$] cos 2h5, exp [ik$] sin 2h5, exp [ik$], exp [i2k$] 

and their complex conjugates. Typically, the expansion of the mean motion 

(3.17) 

(3.18) with F l = F 3 =  0 at x =  +&. 
The corresponding equations for Fz and F4, together with the conditions (3.16), 
subject to the reasonable assumption that 2a, and (6, + K O )  are not eigenvalues 
of the homogeneous forms of equations (3.17), yield 

F2 = F1, F4 = F3. (3.19) 

i 
v,,(x, 7) gives 1 

A:: (D2 - 2a,)F, = - ,D(fofzo), 

1 
[Be I 2 :  0’ - (bo + b”o)F3 = - 201 D[h,o K O  + K2oJLo], 

t For ,u = 0, and h = h,, T = T ,  the real part of b,, < 0 for k > 0. 
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Once the first-order problems for a,, b, and the functions f,, f2,, h, and h,, have 
been solved, equations (3.17) can be integrated. 

As one other example, consider the expansion for vCz2(x, T), the coefficient of 
exp [ i3k$]  cos ah<. The terms proportional to B2, yield 

M ( 2 A ,  Sb,, 2k)p, = (2h2/a)D(hZ0 +hi,) - i { ( l / ~ ) N ( Z h ,  2b0, 3k)  ( 0 2 -  4h2)D 

+i2k(D2+4h2)}(h20ho) + ( A / E )  (D2+4A2) (h20h30)-{h2T+ 2k2&D 

- i k N ( B h ,  36,, 2k) ( 0 2 -  4h2))hi 

-A{( l / a ) N ( 2 h ,  2bo, 3k) (D2- 4A2) + i 4 k D )  (h0h3,). (3.20) 

The boundary conditions are 

p ,  = D2pl = N ( 2 A ,  2bo, 2k)Dp1 = 0 at x = 5 i. (3 .21)  

Again, once h,, h,, and h,, have been determined there is no difficulty in integrat- 
ing equation (3.20) for p,, provided that 2b, is not an eigenvalue of the corre- 
sponding homogeneous problem. This assumption is certainly valid for h = A,, 
and T near T,. Further, the terms proportional to Bi in the expansion of vCz2 
and proportional to Bc Bs in the expansion of vsZz lead to equations similar to 
equations (3.20) and (3.21); from which it can be shown that 

P2 = -P17 q 1 =  2P1- (3.22) 

Proceeding in the same manner, we find that the leading terms in the expan- 
sions for the mean motion and the first harmonics can be computed once the 
first-order eigenvalue and eigenfunction problems have been solved. In  addition, 
upon using (3.16), we find the following relations: 

YC20, U C Z O ?  WS20’ us209 U S Z O ?  U’C20 

m.2 = -m,, m22 = -m2,, mS2 = -wz3,; m4 = -m3,\ 

(3.23) I ~ ~ 2 4  = -m23, m34 = -m33; 

n, = 3ml, n2, = 2m2,, n31 = - 2 . n ~ ~ ~ ;  n2 = n3 = m.3, 

9 5 

(3.36) 
4 = Fl, l$ = F3. G3 = d2, G, = 0, 

G,  is purely imaginary. 
volt u01; vo2, u 0 2 ;  U’o1, U’02 _ _ _ ~ - . .  

t ,  = t , ,  t,, = t2,; yz = y,, yzz = 9 2 , ;  2, = -2,; x3 = 0. (3.37) 
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Third-order terms. Finally, we consider several typical third-order terms in the 
expansions of the fundamentals, vcl0, vslo, vcll and us,,. The coefficient of A: in 
the expansion of vclo(x, 7) yields 

M ( h ,  3a0, 0)fl = 2ac,(02-A2)  ( 0 2 -  h2- 2a,)f0 

+ 2 D + a  (U2+ha)) (f20m31-f3om21) -4h2T(2fo4+f0m1) r2 
- ( 1 / a ) W 3  3a0,O) (02 - h2)"f204  + 4f20m1 + 4fom2,) 

+ ~ ~ f 3 0 l i ; + ~ f O ~ 3 1 - ~ ~ ~ o ~ l ~ l ~  (3.28) 

with f, = 0"fi = N(h ,  3a0, O)Oj',-a,,DfO = 0 at x = 4 i. (3.29) 

Except for the parameter a,,, the non-homogeneous terms in equations (3.28) and 
(3.29) are kn0wn.t The determination of ucl has been discussed elsewhere (Davey 
1962; Reynolds & Potter 1967) and does not involve the non-axisymmetric 
components of the flow; the argument is the same as that for determining bc4which 
is discussed later in this section. Once a,, is determined, f, can be computed 
numerically. 

Consider now the equation for f 2 ( x )  corresponding to the term AcA: in the 
expansion for vclo(x, 7). Making use of the relations (3.16) and (3.22)-(3.27), we 
find that the equation and boundary conditions for f 2  are identical with those for 
f, with (f,, a,,) replaced by (f,, a,,,). Thus a,, = a,,, f, = f,. A similar procedure 
for the remaining third-order terms in the expansion for vclo and for the third- 
order terms in the expansion for vsl0 yields the relations: 

(3.30) 1 
a,, = a,, = a c 2  = a,, = a,, 
as3 = ac3 = a37 

as4 = a,4 = a47 

91 = 92 = f 2  = f1; 

g3 = f 3 ;  

9 4  = f4; 

as5 = ac5 = a5, a5r = $(a3-a4), 95 = f b ,  f 5 r  = $ ( f 3 - f 4 ) ;  

a& = = g6 = f 6  = f 5 *  

Here r used as a subscript denotes the real part. The c and s subscripts are no 
longer necessary. Later we use i to denote the imaginary part. 

Similarly, for the third-order terms in the expansions for v,,, and vS1,, we find 

h,, = b,, = b,, 

h,, = b,3 = b3, 

b,, = b,, = b,, 
b,5 = bc5 = b3-b4, 

I, = h,; 

l3 = h3; 
1, = h,; 

15 = h5 = h3-h4; 

> (3.31) 

t The t>erm involving a,., arises from the term ac,A! in the expansion of dAc/dr.  



- &{( l / a ) N ( h ,  b, + 2a,, k )  (D2 - h2)D + ik(D2 + h2)} 

x [ t i 0  r1+ 2h2, p1- h2,% - h, m21 + f o  r21l 

- ( D 2 f h 2 )  [ - f i O r 3 1 f  2 f ~ O Z 1 ~ h 2 0 m 3 1 - h 3 0 m 2 1 ~ f ~ ~ r 2 1 1  

- {+h2T + k2uD - ikN(A, b, + 3a0, k) (D2 - h2)) 

x [2h,E;+f0r,-h,m,]+ &h{(l/a)N(h,b,+ 2a0,k) 

x ( 0 2  - A') + i 2kD)  [ - 2h3,Fl -to r3, + 2f0 21 + h, ~ ~ 3 1 -  h3, mi 

+f 30 r l l .  

B *B 

- 4  -4 
b, = hi: ( x ) @ d x / j  [h$ N(h ,  b,, k )  (D2 - h2)h, + h, N ( h ,  b,, k) (D2 - h2)h,+]dx, 

> (3 .33 )  

(3 .36)  
where it is understood that the calculation is carried out at  a, = 0. 

The parameters a,, a3, a,, a5, b,, b,, b3 and b, can be determined in a similar 
manner. The arguments of Watson (1960)  have been applied by Davey (1962)  to 
show that, for a given T (+?) within a supposed range of convergence of the 

-f See Ince (1956, 59.34). 
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expansions, there is no ‘better’ choice of a1 than that given by the formula 
analogous to (3.36) when working to cubic order in amplitude; this is presumably 
true a t  higher order in amplitude. A corresponding statement applies to b, as 
given by (3.36). 

+ a5 A, B,B, + 4 A,&$,, 

dA,/dr = aO As + a1 A: + a1 A,& + a3 A,IB,I + a, A,] B,I + a5Ac B, B, 

dB,/dT = boB,+bl~c~B,[2+b,B,~~s~z+ b3B,A,2+b4B,A: 

dB,/dT = boB, + blB,IB,12 + b, B,I B,I2 + b3 B,A,2 + b, B,A,2 

+~~,A,B,B,, 

+ (b,-b,)B,A,A,+ (b1-b,)BeB,2, 

) (4.1) 
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I(0)-Laminar Couetteflow. A possible solution of equations (4.1) is 

A = A  = B  = B  = O ,  

i.e. the periodic perturbation is zero. This solution, which gives the basic 
Couette flow, is stable to small perturbations in A,, A,, B, and B, provided 
that a, and b,, < 0. This is the case for T c T,, and Couette flow is stable within 
the model for T < T,. 

I(i). TayZor-vortex $ow. It is easy to show that a second class of solutions of 
equations (4.1) is 

B, = B, = 0; A,  = CA,, A,2+A,2 = Kaoe2~~7 / (1 -Ka le2~o~) ,  (4.2) 

where K and C are arbitrary real constants. It is known that a, < 0 and a, 0 
as T T,. Hence for T > T,, 

(A2,+A:)+(-ao/al) = A2, as 7 3 ~ 0 .  (4.3) 

This equilibrium solution represents a Taylor-vortex flow, the parameter C 
giving the [-phase. Without loss of generality C can be taken equal to zero. 
The azimuthal velocity perturbation from laminar Couette flow takes the form 

v(x,  5, 7) = v,,(x, 7) + vc,,(x, 7) cos hC+ vc2,(x, 7) cos 2h<+ . . . 
= [A,2F, + O(A3-j + [A,fo + AZf, + O(Ac5)I cos AC 

+ [A: m, + O(A,4)] cos 2hC + . . . , (4.4) 

(4.5) 

and as 7 -f 00 we obtain the equilibrium motion 

v = A,f,(x) cos AC+A:[F,(x) + m,(x) cos 2h5]+ O(A:). 

For details of (4.4) and (4.5), the reader may consult the paper by Davey (1962), 
where the theoretically predicted torque and the experimentally measured 
torque are shown to be in excellent agreement for a small range of T above T,. 

Consider now small perturbations from the Taylor-vortex flow. We write 

A,(T) = A, X. 
Linearization of (4.1) for small values of x, A,, B, and B, gives 

Since a, > 0 for T > T,  (where the Taylor-vortex flow exists), x decays. The 
result for d A , / d ~  reflects the presence of the class of solutions (4.3) with an arbi- 
trariness in the axial phase of the Taylor-vortex motion (see Segel (1965) for 
a similar situation in the thermal-convection problem). The real parts of 
b, - b, a,/a, and b, - b, a,/a, determine the growth of decay of B, and B, respec- 
tively, and hence the instability or stability of the Taylor-vortex motion with 
respect to in-phase and out-of-phase non-axisymmetric disturbances respectively. 
The calculation of the parameters a,, a,, b, and b, and the answer to these 
important questions will be discussed in 5 5. 
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A natural question which might be raised is the relevance of the stability 
equations (4.6) to a ‘straightforward ’ discussion of the stability of steady 
Taylor-vortex flow, the azimuthal component of which is given to second order 
in amplitude by (2.1) plus (4.5). The u and w components of velocity are given by 
formulae similar to (4.5). Suppose this Taylor-vortex flow is perturbed by a small 
non-axisymmetric disturbance of such a form that its azimuthal velocity is 
v’(x,6) exp [q7 +it%$]. Upon expanding v‘ and q as series in the small amplitude 
A, = ( - ao/a,)*, we can show that to second order in amplitude, q = b, - b,a,/a, 
if v‘ has the same phase in 6 as the Taylor-vortex mode, but that q = b, - b,a,/a,, 
if v‘ differs in phase by $r. These formulae confirm the stability coefficients 
given by (4.6) through terms O(A:). In $ 6  we shall discuss the possible influence 
of terms O(A2) on the precise location of the zeros of the stability coefficients 
(4.6), that is of q above. 

Other solutions of equations (4.1) are tabulated below. Stability criteria are 
given for those cases where the result can be stated simply; this is the case for the 
‘ simple ’ modes, which have only one of A,, A,, B,, B, non-zero, and for the spiral 
mode B, = iB,. In  these solutions 7, denotes an arbitrary time phase. 

I(ii). Non-axisymmetric simple mode. 

(4.7) 1 A, = A ,  = B, = 0, 

P e  = ( -bor/blr)+, 

B, = P e e i w ( T - T s ) ,  

w = boi - h i  bOr/blr. 
This solution exists if - b,/b,, > 0, and it is stable if a, - a3 bor/bl,, a. - a4 bo,/bl,, 
- 6 ,  and b,( 1 - b2,/b1,) are all less than zero. A generalization of this motion is 
A, = A ,  = 0, B, = P,, exp [i0(7 - 7,)], B, = P,, exp [iw(7 - 7,)] with /3:e + /3ze = 8,“. 

II(i). Wavy-vortex $ow. 

This solution, which represents the interaction of a Taylor-vortex mode with 
an out-of-phase non-axisymmetric mode, is of particular interest. It exists 
when a1 b,, - a, b,, a4 b, - a, b,, and a, b,, - a4 b, all have the same sign. If only 
A,  and B, modes are allowed, it is stable if a, A: + blrP: < 0 and a, b, - a4 b, > 0. 
Note that if the latter condition holds, then the existence of the wavy-vortex 
flow requires a,b,-a,b, < 0, which in turn implies that the Taylor-vortex 
flow I (i) (with a, < 0, a, > 0) is unstable according to (4.6) to a B, perturbation ! 
For A,  and B ,  perturbations the corresponding statement is much more complex. 
The form of the azimuthal component of the disturbance velocity (3.2), correct 
through terms O(A:) and O(Pz), is 

v ( ~ , T ,  $> 6 )  = A,fo(x)cosh5+2{Peh,(~)sinh~exp (i[W + ~ ( 7 - - 7 , ) I ) } r  

+ { A : w 4  +P:&(x) l+  {A:m,(4 +P,2m,(x)) cog 2h5 
+ ~ P : { [ - P ~ ( x )  ~ O S ~ ~ C + Y , ( ~ ) I  ~ X P  (i2[k$ + ~ ( 7 - - s ) I ) ) r  

+ 2AeP,{r,(z) sin 2hYexp (i[k$ + ( 4 7  - 7,)1)},. (4.9) 

This result should be compared with the Taylor-vortex flow (4.5). 
3 Fluid Mech. 31 
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II(ii). Nan.-axisymmetric vortex $ow. 

(4.10) i 
a b -a3b, 

A ,  = 0, B, = 0, A,  = A, = A>---, B, = /3 ,exp(i~(~-~,)} ,  
a3 b3r - a1 blr 

w = b,i + blip," + b3i A:. 2 - a1 bOr - b3r 

- a3 b,, - a, b,, ' 

This solution exists if the numerators and denominators of A: and p," respectively 
are of the same sign. We do not consider the question of stability here. The 
terminology ' non-axisymmetric vortex flow ' is used to indicate that while the 
motion depends on q5, the A, and B, disturbances are in phase in c, and the vortex 
motion is bounded by planes of constant <. 

II(iii). Xpiral mode. 

A, = A ,  = 0, ] (4.11) 
B, = peexp [ i o ( ~  - r,)], B, = p, exp [ ~ w ( T  - 7,) k Bin], 

p," = - b,,/2b2,, w = boi + 2bZip,2. 

This solution exists if - b,,/2b, > 0. It is stable if b,, > 0, b,/b,, > 1,  and 
a,- (a3+a,)b,,/2b,, < 0. Because of the phase difference of in in B, and B, the 
terms in the velocity distribution combine together to give a wave travelling in 
both the < and qi directions. Alternatively, it may be regarded as a spiral pattern 
which rotates with a certain angular velocity. 

I11 and IV. Unless certain relations exist between the a and b coefficients, 
there are no triple modes. Quadruple modes are either generalizations of the 
double modes A,,  B, and A, ,  B, or (in principle) completely new modes. The latter 
possibility has not been investigated. 

In concluding this section we return to the questions raised earlier of truncating 
the expansions at  third order in the amplitudes. Assuming that a,, a,, a4, a5, 
b,, b,, b, and b, are O(l ) ,  we see from equations (4.3), that possible equilibrium 
solutions of (4.1) have amplitudes which are O(a$) and/or O(b$,). For a given value 
of the Taylor number b,,/a, is fixed, so that the amplitudes are O(a$) where a, is a 
small number if T is close to T,. Whereas the linear and cubic terms on the right- 
hand side of equations (4.1) are then both O(a$, the terms omitted which are of 
quintic or higher order in amplitude are O(af). 

To give some justification for neglecting such terms, we will discuss global 
stability of the system (4.1) in order to assess whether all solutions of amplitude 
O(a$) retain that order, or whether there are solutions which become unbounded 
as r -+ co. If any solutions had such behaviour, it would be invalid to truncate 
the set of ordinary differential equations (4.1) a t  cubic terms. Happily, however, 
it  is possible to obtain conditions on the coefficients a,, b,, etc., which ensure that 
solutions within some bounded domain O(a8) cannot escape from that domain; 
so that, consequently, solutions of equations (4.1) retain amplitudes O(a8). 
This statement of global stability can be proved by constructing a Liapunov 
function (Minorsky 1962) of the form 

L = 01, A: + a, A: + P, I B, I 2 + p, I B, 12, (4.12) 

where a,, a,, p,, p, are real and positive. It is found that d L / d r  is negative if L is 
greater than some value of order a,, provided certain conditions hold on a,, b,, 
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etc. This result ensures thac, for amplitudes larger than O(&) the trajectories are 
heading ‘ inwards ’ ; consequently, the system (4.1) is globally stable. The con- 
ditions on a,, b,, etc., are satisfied (Stuart 1964) for the ‘simplified’ mathematical 
model proposed in the next section. We note, in passing, that if the cubic terms 
in (4.1) were ignored (as in linear theory), the system would not be globally 
stable when a, > 0 and/or b, > 0,  since then there would be exponentially 
increasing solutions. 

Before leaving the topic of the truncation of the amplitude equations at  cubic 
terms, we reiterate a second point mentioned earlier in this section. At values of 
the parameters near those at  which the ‘local’ stability of an equilibrium solu- 
tion changes character, the quintic terms may be important in a specification of 
the precise location of that change in character. This will be discussed in detail 
in $6. 

5. A simplified mathematical model 
In order to complete our discussion of the possible equilibrium solutions of 

equations (4.1) and their stability, we need to compute numerical values for the 
coefficients a,, a,, ..., a5, b,, .. ., b,. Of particular interest are the combinations 

b,, b4, b,, - - a, and b, - - a,, 
a1 a1 

which, as indicated by (4.6), determine the stability of the Taylor-vortex flow. 
Since a, = 0 a t  T = T , ( O ) ,  each equals b ,  and hence is negative. Assuming, how- 
ever, that our theory is a good model of the physical problem, we may anticipate 
that for a fixed value of A ( = A,) and within a range of T > T, there will be a mini- 
mum value of T ,  say T‘, greater than T, with a corresponding critical value of k 
for which one of (5.1) will become positive. Above that value of T the Taylor- 
vortex motion will be unstable, and the corresponding value of k will determine 
the azimuthal wave number? of the critical non-axisymmetric disturbance. 

A calculation of the a’s and b’s as functions of E and T for fixed p( = 0 )  and 
A( =A,) is a formidable task, and it is natural to consider possible simplifications. 
One such simplification is suggested by the work of Gross (1964), as reported in 
part by Krueger et al. (1966) which was mentioned earlier. Gross showed that, for 
p = 0 and a given value of A ,  both the critical Taylor numbers and the amplifica- 
tion rates depend only slightly on k, even for (quite typical) values of k of order 
10. For the case of small-gap, his results are displayed in table 1. Note that while 
T,(rn) is monotonic increasing, the amplification rate as indicated by (db,/dT) 
evaluated at T,(m) is monotonic decreasing. The actual critical values of A and 
T for the assigned values of K are given in the last two columns of table 1 ; they 
show that there are only slight changes if A, is replaced by A,(m). Gross showed 
further that while results from the small-gap equations are changed by a few 

t We recall (from below (3.21)), that although k = mR,d2/v is a continuous parameter, 
it is only necessary to consider those values which correspond to integers, m, for the 
physical wave-number. From the definitions of T and a in (2-5)  with d / R ,  --f 0 in T ,  it 
follows that for ,a = 0, k = m(T6)&/2 = K(&T)* where IC = m($&)* and 6 = d/R,; thus for 
a given geometry, values of K = m($6)* are assigned. 

3-2 
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percent if the exact linearized equations are used, these errors occur uniformly. 
For example, using the exact equations with ,LA = 0, 7 = 0-95 (i.e. 6 0.05), 
h = 3.127, he found that T,  = 1755, CI = 0.00746 for m = 0 and T, = 1763, 
u = 0.00742 for m = 1. A comparison of these results with those in the first two 
lines of table 1 shows that the correction for gap size is essentially the same for 
m = 1 as for m = 0;  it  may also be helpful to refer to figure 4 on p. 535 of Krueger 
et a,Z. (1966). 

0 0 1695 
0.15811 1 1701 
0.31623 2 1720 
0-47434 3 1753 
0.63246 4 1800 
0.79057 5 1866 

0.00772 
0.00770 
0.00758 
0.00740 
0.00720 
0.00690 

t The values of db,,/dT at T,(m) have .een inferrec 

TJm) a@) = (db,,/dT)T,(m)t TAm) 
K = m($&* m for h = 3-127 for A = 3.127 &(m) for h = h,(m) 

3,127 1695 
3.131 1701 
3.143 1720 
3.163 1752 
3.190 1799 
3,225 1863 

from Gross’s data (1964, table 9). 

TABLE 1. Data from linearized theory (8 = 0.05, ,u = 0) 

Assuming for the moment that the coefficients of the non-linear terms in equa- 
tions (4.1) are also only slightly dependent upon k (or K), we consider the form 
taken by the a’s and b’s as E + 0. Even for the case m = 4, S = A, for which the 
change in T,(m) from T , ( O )  is about 6 %, it is hoped that results in this limit will 
a t  least give qualitative information. 

For the first-order terms, from (3.11) to (3.14), 

bO = “0; = f0, h20 = f20, h30 = f30 15.21 

in the limit Ic -+ 0. Using these results in the second-order equations, as typified 
by (3.17) and (3.20), and letting k+O,  we find 

(5.3) 

(5.4) 

1 
F3 = 2Fl, G, = 0; 

m3 = Zm,, m2, = 2mZ1, m33 = Zm,,; 

rl = 2ml, r2, = Zm,,, r31 = 2m,,; 
Pl = ml, P21 = m21, P31 = m31; 

yzl = 0, y1 = Fl; t,, = 0, tl = 2Fl. 

Finally, from the third-order equations, as typified by (3.28), the same limit gives 

1 a, = 6a1, f3 = 6f1; a,, = 2a1, f4 = 2f1; a5 = 2a1, f5 = 2f1; 

6 ,  = 3a1, h, = 3f1; b, = Za,, h, = Zf,; 

6, = 3a1, h, = 3f1; b, = a,, h, =fl. 

The implication of these results for the stability of Taylor-vortex flow is 

b,, b4T bor--ao = --a0, bO7--ao = 0 as k + ~ .  
“1 “1 

(5.5) 
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Thus for a discussion of the stability of the Taylor-vortex mode (A,) with 
respect to in-phase (B,) non-axisymmetric disturbances, it is probably valid to 
set k = 0. Moreover, since a, > 0 for T > T, the Taylor-vortex mode is stable to 
in-phase non-axisymmetric disturbances. On the other hand (4.6) and (5.5) show 
that stability with respect to out-of-phase (B,) non-axisymmetric disturbances 
depends upon the correction terms in k, precisely because b,+a, and b4+a, 
as k+O. To examine the behaviour of [boy- (b4,/al)ao] more carefully as k+O 
with A = A, and T-T,  small, we note that it can be shown that (with 
m = Zk(T&)--t)  

a,(T) = a(O" - T,(O)I + - T,(O)l2,  (5.6) 

and T,(m) = T,(O)+k2T,,+ ..., (5.7) 

b,(m, T )  = ~ ( m )  [T - T,(m)] + O[T - T,(m)I2 

= [a(O) + k2a, + . . .] {T - [T , (O)  + k2T,, + . . . I}  + O[T- T,(m)]2 

. b,, a( O ) ]  [ T - T,( O)] - a( 0) T,,} . 
a, 

(5.10) 

Thus, the stability or instability of the Taylor-vortex flow to an out-of-phase 
non-axisymmetric disturbance depends to first-order upon the k2 correction 
factor (5.10). 

At T = T , ( O )  it is clear that, since a(0) > 0 and q.I > 0, (5.10) must be negative. 
If, at  some critical value of T ,  (5.10) changes sign, the Taylor-vortex flow will be 
unstable for higher values of T provided the terms neglected in (5.10) are truly 
unimportant. Moreover, since the azimuthal wave-number m appears only 
through k, any critical value of T derived from (5.10) must be independent of m; 
terms O(k4) would have to be added to (5.10) to obtain such a dependence on m. 
We shall return to this matter in our discussion of the results in 0 6. 

The preceding argument suggests that a simplified model may be considered 
with a3, a4, a5, b,, b, and 6,  of (4.1) replaced by their limiting values as k-+ 0 as 
given in equations (5.4), but with a,(T),  b,(m, T )  and b4(m) taking exact values 
(for given p, A) .  As it affects the question of instability of Taylor-vortex flow with 
respect to B, disturbances, the simplified model has the same accuracy as (4.1), 
since the B, equation of (4.6) is exact; but its accuracy is less in the determination 
of the equilibrium state arising from that instability. In  our study of the simpli- 
fied model, we shall find it convenient to write 

( X ,  y, 2, V )  = ( - al)'.(A,, A,, Bc, BJ, 

(8, c, ya,) = (all? b,, b4), 

t As discussed at the end of $3, a, and b,, are evaluated at T,. 

(5.11) 

(5.12) 
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where y ,  which is a complex number, approaches unity as k -+ 0. Then equations 
(4.1 ) become 

(5.13) I dX/& = EX - X3-  X Y 2  - 6X1ZIZ - 2x1 VI2 - 2Y(zv  + ZV) ,  
dY/d7  = E Y -  Y 3 -  YX2-6YlV12-2YIZ12-2X(ZV+ZV),  

dZ/& = - 3z121 - 221 P( - 3zx2 - yz Y2 - (3 - y )  Y - 2 V 2 ,  

dV/d7 = ~ B - 3 V ~ V ~ ~ - 2 V ~ Z ~ ~ - 3 3 Y ~ - y ~ X ~ - ( 3 - y ) Z X Y -  v 2 2 .  

Corresponding to the possible equilibrium solutions of equations (4. l), we have 
the following possible equilibrium solutions of the simplified system (5.13). In 
stating the solutions, the facts that E > a,. and a1 < 0 have been used, and a 
suffix e denotes the equilibrium value. Note that generalizations of the solutions 
can be effected by alteringthe 5 and T phases, as was pointed out in the previous 
section. 

I(0). Laminar CouetteJlow. 
X = Y = Z = V = O  (5.14) 

exists for all E and is stable for E < 0 (T < q), and unstable for E > 0 (T > T,). 

I(i). Taylor-vortex Jrow. 
x:=s, Y E Z S  V E O  

exists for 8 > 0 (T > T,) and is stable or unstable as a?. 2 y,.e. 

Ifii). Non-axisymmetric simple mode. 

Z, = (+,.)*exp(iat7), ( X  = Y = P = 0) 

exists for a,. > 0 (T > q(m)), but is unstable. 

II(i). Wavy-vortexJEow. 

(5.15) 

(5.16) 

where w = ad- y9X:. It exists if y,. < 1 and a,. > y,.~.  Whenever it exists, it  is 
stable. Note that if a,. > yre, the Taylor-vortex flow is unstable. 

II(ii). Non-axisyrnmetric vortex Jlow. 

exists for BE < a,. < 36, which is expected for some T > T,(m), but is unstable. 

II(iii). Spiral mode. 

Z, = Bgiexp (iat7), V ,  = iz,, ( X  = Y = 0) (5.19) 

exists for 0; > 0 (T > T,(m)), and is stable or unstable as a,: $ E ,  

ruple modes are simply generalizations of the double modes I1 (i) and I1 (ii). 
There are no triple modes since ?/i + 0, as we shall shortly see, and the quad- 
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The most important observations (assuming there exists a T > Tc such that 

(i) e < 0. Laminar Couette flow exists and is stable. 
(ii) E > 0, a;. < 7,". Laminar Couette flow is unstable, and Taylor vortex flow 

exists and is stable. 
(iii) t ~ ,  > 7,~. Taylor-vortex flow is unstable, and wavy-vortex flow exists and 

is stable. 
Perhaps of lesser, though notable, importance is the existence and stability 

of the spiral mode I1 (iii) for r, > &. 
Turning now to the computation of 8, CT and y (or, equivalently, a,, b,, a ,  and 

b,) we note, as mentioned earlier, that a, and a, have been computed by Davey 
(1962) and a, and b, by Gross (1964). It remains only to compute b,. However, 
since, as part of the calculation of b,, it is necessary to recompute a, and b, and 
since, moreover, b, = a, at k = 0, there is no practical advantage in our using the 
earlier results. Thus for given values of ,LA, A, k and T we first solve (numerically) 

ir, = 7, e )  are : 

m 64, b*i b 4 r h  

0 -10.035 0 1 
1 - 9.5063 0.72035 0.94731 
2 - 7,9569 1.5238 0.79291 
4 - 2.2664 3.6251 0.22585 

TABLE 2. Non-linear coefficients (S = 0.05, ,u = 0, h = 3.12657, T = 1694.95). 
Scaling is f , ,(O) = 1 ; h, scaling is irrelevant for b4, al. 

the linear stability problems for axisymmetric and non-axisymmetric disturb- 
ances to determine a,, f,, f z o ,  f30, fO+ and b,, h,, hZ0, h3,, h$ respectively, wherefz 
and hO+ are the adjoints of f, and h, respectively; then the second-order terms 
m,, mZ1, m3,, r,, r2,, r3,, z, and F, are evaluated. Finally, b, and a, (by setting k = 0) 
are determined by the condition (3.36). The computational methods and pro- 
cedure are broadly similar to those described in an earlier paper on Taylor- 
vortex flows (Davey 1962). Here, however, there is the added complexity 
brought about by the complex arithmetic and the vast number of functions and 
their derivatives which are involved, as a glance at (3.32) and (3.33) will show. 

The critical Taylor number, T,  = T , ( O ) ,  given by the calculations is 

T , ( O )  = 1694.95 at h = 3.12657 with p = 0, k = 0. (5.20) 

For ,u = 0 and the value of h given in (5.20), a, and b,(m) have been evaluated at  
T,, as discussed in $3,  and for integer values of m for 6 = 0.05 with k = m(T6)*/2. 
The results are given in table 2. 

The amplification rates and frequencies, given by the real (b,) and imaginary 
(b,J parts of b,, are given in table 3 for several values of m( 6 = A) and a range of 
values of T, but with h and ,LL given by (5.20). 

The stability coefficient b,, - b,,a,/a, = a; - y, e as a function of T is shown in 
table 4. It can be seen that, for each value of m, the stability coefficient changes 
sign at  some T'(m), the value being about 1821 for m = 1, 1824 for m = 2, and 
1834 for m = 4. The meaning of these results, the effects of the approximations, 
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and the relevance of the theory to experiment, are discussed in $6. For the 
moment we note that the values of b,, - b,,a,/a, form = 2 and m = 4 are, to a 
rough approximation, 4 times and 16 times the values for m = 1 respectively. 

m ... 0 1 2 4 

T 

1694.95 
1715 
1735 
1755 
1775 
1795 
1815 
1835 
1855 
1865 

a0 

0~00000 
0.15444 
0.30771 
0.46021 
0.61195 
0.76293 
0.91317 
1.0627 
1.2115 
1.2856 

b O T  

- 0.04791 
+ 0~10611 

0.25896 
0.41 104 
0.56235 
0.71292 
0.86275 
1.0119 
1.1602 
1.2342 

- bOi 
4.8441 
4.8738 
4.9032 
4.9325 
4.9616 
4.9906 
5.0194 
5-0480 
5.0765 
5.0907 

bw 
-0.19170 
- 0.03895 
+ 0.11263 

0.26345 
0.41351 
0.56282 
0.71140 
0.85926 
1.0064 
1.0797 

- bOi 
9.6901 
9-7495 
9.8084 
9.8670 
9.9252 
9.9832 

10.041 
10.098 
10.155 
10.184 

bor 

- 0.76789 
- 0.62023 
- 0.47371 
- 0.32794 
-0.18292 
- 0.03862 
+0.10496 

0.24784 
0.39001 
0.4 6 0 8 4 

- boi 
19.396 
19.515 
19.633 
19.750 
19.867 
19.983 
20.099 
20.214 
20.328 
20.385 

TABLE 3. Amplification rates of linear theory (6 = 0.05, p = 0, h = 3.12657) 

m ... 1 

1694.95 - 0.04791 
1715 - 0.04020 
1735 - 0.03254 
1755 - 0.02492 
1775 -0.01735 
1795 - 0.00981 
1815 - 0.00231 

T 

1835 +0*00515 
1855 0.01258 
1865 0-01629 

2 

- 0.19170 
-0916141 
- 0.13136 
- 0.10146 
- 0.07171 
-0.04211 
- 0.01266 
+ 0.01664 

0.04581 
0.06034 

4 

- 0.76789 
-0.65511 
- 0.54320 
-0.43188 
- 0.321 13 
- 0.21093 
-0.10128 
+ 0.00783 

0.11640 
0-17048 

TABLE 4. The stability coefficient b,, - b,,a,/a, (6 = 0.05, ,u = 0, h = 3.12657) 

This is in accordance with equation (5.10). Indeed the data in table 4 can be used 
to justify the following approximate formulae, valid for 6 = d / R o  = A: 

b,- b,,a,/a, = k2(1.8264 x 10-5[T - T , ( O ) ]  -0022848 x 

- (0.086202 x 10-5)k4, (5.21) 

!l?"(m) = q ( 0 )  + 125 + m2. (5.22) 

The k4 effect, which leads to m2 in (5.22), is seen to be relatively small. While 
the values of T'(m) for m = 1,2,4 are close together, they are quite separate 
from T , ( O ) .  

where k2 = 21.1875m2, and 

6. Discussion of theory and comparison with experiment 
It has been argued in the previous section, and confirmed by calculation, that 

instability of the Taylor-vortex flow is connected with subtle changes in the 
stability coefficient (bar - b,ra,/a,). Indeed, we have found that these changes do 
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produce a reversal of sign of the above coefficient at  some value of T of order 8 yo 
above the Taylor number at which the Taylor-vortex flow itself appears. It may 
be concluded, therefore, that if the approximations we have made are valid, the 
mathematical model does yield an instability of the Taylor-vortex flows; later 
in this paper we shall compare the consequences of this theoretically derived 
instability with experiment. In  the meantime, however, it is desirable to assess 
the magnitude of known approximations in the mathematical model, especially 
insofar as they affect the precise value of the Taylor number at  which the co- 
efficient (b,, - b,,a,/a,) changes sign. 

The approximations are of four main kinds: (i) the amplification rates a,( = E )  

and b,, ( =g,) are regarded as small enough for the amplitude equations (4.1) 
to be truncated at  cubic terms; (ii) the small-gap approximation (d/R,+O) 
has been used both in the derivation of the basic partial differential equations 
(2.4) and, by implication, in the limit k+O used in much of the analysis of the 
simplified mathematical model of $ 5 ;  (iii) the number of basic modes has been 
restricted to four, all of which have the same axial wave-number whereas two of 
them have an azimuthal wave-number of zero and two have some other given 
azimuthal wave-number ; (iv) the cylinders are infinitely long. 

Let us consider now the question of possible instabilities of the Taylor-vortex 
flow (as opposed to the question of the nature of the motion which develops from 
any instabilities). Clearly, in the present work, attention is restricted to insta- 
bilities associated with perturbations of the form of the four basic modes, whose 
wave-numbers are subject to therestrictions described under (iii) above. Although 
it would be of value to have information concerning the stability or instability 
of Taylor-vortex flow against other perturbations, the four modes were originally 
selected because of their especial relevance to several experiments. In  this sense 
the choice is felt to have been a sensible one. Nothing more can be said about the 
more complete problem at this stage, but the generalization from (iii) needs to 
be borne in mind. 

The small-gap approximation (ii) is known to be a good approximation in 
linearized theory (Brueger et al. 1966), and further the error is uniform in k .  The 
accuracy of the approximation for the non-linear problem cannot, however, be 
assessed until calculations have been done from the full equations (without 
d/R,+O). It is hoped that, as in linearized theory, the results are accurate to 
within 5 % or so (and if uniform in k would not change the critical azimuthal wave- 
number), at  least with reference to the instability arising from the B, mode. The 
additional approximation k + 0 is also a good approximation in linearized theory, 
and has some validity for the non-linear problem in the sense that for m = 1, 
which corresponds to the smallest value of k used, the value of b,,/a, differs by 
only about 5 yo from unity (see table 3). Other aspects of these approximations, 
especially a reconsideration of the result that B, perturbations decay, will be 
discussed later in this section. 

We now come to what is, in principle, a major approximation in the calcula- 
tion of the critical value, T’(m),  for instability of the Taylor-vortex flow; this 
approximation, namely (i) above, has already been hinted at  in 3 4, but we must 
now discuss the matter with some care. Clearly, in obtaining this new critical 



42 A. Davey, R. C. Di Prima and J .  T .  Stuart 

condition, we have balanced out the two parts of (bo,-b4,ao/al), each of those 
parts being proportional to a ‘small’ parameter. (Although, as seen in table 3, 
a, and b,, are of order 1 in the range of interest, this value is small compared 
with A2 N 10; the case for this criterion of ‘smallness ’ has been argued elsewhere 
by Davey (1962, p. 346).) The neglected terms, due to truncation of the amplitude 
equations (4.1) at cubic terms, may well be smaller than each of the terms b,, 
and b,,a,/a, individually, but may be very important in the neighbourhood of 
the zero of that coefficient. Indeed, it is conceivable that such terms could even 
prevent the occurrence of a zero in the range of validity of the present type of 
theory. It is for this reason that we must give detailed attention to this question. 

The first and second parts of (b,-b,a,/a,) arise respectively from linear and 
non-linear (cubic) terms of the relevant equations of (4.1). Let us consider the 
form which those equations would take if quintic terms were included. Eut 
rather than deal with the complete set (4.1)) we restrict our attention to the pair 
of equations for the Taylor-vortex mode (A,) subject to linearized B, perturba- 
tions. It is this procedure that led to equations (4.6) at cubic order, and therefore 
to the stability coefficient (b,,-b,a,/a,). If quintic terms are included, (4.1) in 
a generalized form yields 

@& = a,A,+alA,3+a2A,5+ ..., 
dr  

2 _ _  = b,B,+b,B,A~+b,B,A,4+ ..., (6.2) 

where a2 and b, are new parameters, unrelated to the a2 and b, in (4.1)) which must 
be determined. 

Equation (6.1) has an equilibrium solution, which is descriptive of Taylor- 
vortex flow; the first three terms of (6.1) are each of order at ,  whereas the quintic 
term is of order a t .  It is this feature which implies that a cubic truncation (as 
in (4.1)) is uniformly valid for a calculation of the equilibrium state (as a,-+O), 
though not necessarily, we hasten to add, for a discussion of stability or instability 
of that state. With a, regarded as a small parameter, the equilibrium solution of 
(6.1) to order a: is 

Substitution of this expression in (6.2) yields 

A: = ( - a o / a l ) - a ~ a 2 / a ~ +  .... (6.3) 

dBs = B,{bo - b, ao/al + [b, - b, a2/al]ai/a:}, dr  

so to O(at), the stability or instability of the Taylor-vortex flow against B, per- 
turbations depends on the sign of the expression 

bOr - b4r a O / a l  + Cb5r - b4r a2/allai/a:.  (6.5) 

In order to assess the importance of the term O(a;) in (6.5)) it is necessary to 
know the magnitude of b,, and a2. Reynolds & Potter (1967) have calculated the 
Taylor-vortex flow to sixth order in amplitude, and from their data we have 
estimated that a2 - - 22 when a, - - 10. To estimate b5,, we again consider the 
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approximation k+ 0. In this limit b, tends to a2 just as b, is known to tend to a,. 
Briefly, the argument is as follows. Since (6.4) is linear to B,, and is the equation of 
a perturbation which diflers in [-phase. by in from the Taylor vortex, A,, equa- 
tion (6.4) must become equivalent to the equation for an A, perturbation-t to the 
Taylor-vortex (B,+A,) as k+O. By utilizing ‘group’ arguments that A, and 
A, in various combinations can only represent shifts in <-phase, we can show that 
the equations corresponding to (4.1), but of quintic order and involving A, and 
A, alone, must be of the form 

together with a similar equation with the c and s suffixes interchanged. Since 
equation (6.2) must become equivalent to the linearized (in A,) form of equation 
(6.6), it  follows that B, -+ A,, b, + ao, b, + a, and b, -+ a2. 

Thus, in the limit k+O, (6.5), like (5.10), tends to zero. More precisely we may 
deduce, as we did for b,-b4,a,/a, in equation (5.10), that (6.5) is O(k2). In  the 
case of b,, - b,,a,/a, more exact calculations led to the values of b,,/a, given in 
table 3, and then the values of (b ,  - b,, ao/al) given in table 4. For an estimate of 
b,, we can at  present only (and hopefully) make an intelligent guess. Let us sup- 
pose that b,,./a2 is approximately the same as b4,/a,. Then a rough lower limit to 
the magnitude of (bSr - b4,a2/a,) is zero. A rough upper limit to its order of magni- 
tude can be obtained by setting b,, = a2, with b,,/a, given by table 2. This guess 
leads to the following: 

Ib5,-b4,a2/a,I g 2Gla21 for m = 1; 

+1a21 for m = 2; 

2 $la,l for m = 4. 

(6.7) i 
i 

The sign of the correction term is unknown. Finally, in the neighbourhood of 
T = 1820 to 1835, a, N 1 so with a, N - 10 and a2 N - 22, 

(6.8) 

I (b,, - b,, a2/al)a:/a:l g 0.01 1 for m = 1, 

‘Y - 0.044 for m = 2, 

’Y - 0.18 for m = 4. 

Insertion of these numbers into the data of table 4, as a correction to 
(b,,- b4,.ao/a,), indicates that the value of T at which this expression changes 
sign alters by about 30 form = 1 and 2, and by a value greater than 30 for m = 4. 
Similar results follow from modification of equations (5.21) and (5.22) by use of 
(6.8). The corrections are rather small compared to experimental accuracy in 
relation to T ( - 1700) but are not negligible in relation to (T’(m) - T , ( O ) ) ,  which is 
of order 120. 

A matter related to that of neglecting quintic terms is that of evaluating b, and 
a, at T = 1695 only. However, as Watson (1960) has argued very cogently in a 

t For example, for the amplitude equations (4.1) we would have 

dA,/dr = a,A,+a,A:A, and dB,ldr = b,B,+b,A:B,; 

thus b,  + a, and b, + a, as Ic + 0 as has been demonstrated by other means. 
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related context, there is no point (at cubic order) in evaluating these coefficients 
to better accuracy than O( 1). If the calculations were done a t  other values of T 
small changes O(a,) or O(b,,) in a, and b,, would be introduced,? with resultant 
changes in the amplitude equations (see (6.3) and (6.4)) of the same order as the 
corrections due to the quintic terms. Thus, we conclude that in the small-gap 
model the scheme of calculation of $ 5 ,  with its limitation to cubic terms and 
neglect of other terms of like order, leads to inaccuracies of order 30 to 50 in the 
evaluation of the critical Taylor number T‘(m) for the instability of the Taylor- 
vortex flow. 

Having given some justification for the approximations used, we turn to a com- 
parison of the values of m and of T’(m) with those observed experimentally. In 
the present case, as mentioned earlier, the theory gives a value for T’(m) which is 
about 8 yo above T,  (though this figure could be affected by quintic terms). The 
weak, monotonic increase of T‘(m) with m may or may not be significant; it 
could be affected by the small-gap approximation and by the neglect of quintic 
terms. However, there is, on the face of it, a slight preference for m = 1 as the 
most unstable mode. 

The experimental data of Coles (1960,1965) shows that, for an apparatus with 
d / R ,  = +, T‘(m) is about 55% above T,, while m = 4. The work of Schwarz, 
Springett & Donnelly (1964), on the other hand, with d / R ,  = & gives two values 
of T’(m), whose significance we shall discuss shortly, but, we note here that a 
‘weak ’ mode has its T‘(m) about 5 yo above T,$ and a ‘ wavy ’ mode 20 yo above 
both with m = 1. The wavy-mode value of 20 yo is roughly equivalent to a value 
of 15 yo inferred by Donnelly (1963) using the ion technique, also for d l R ,  = &. 
Nissan et al .  (1963) have reported a T’(m) of about 40 yo above T,, with m = 1 
for dlR,  of about &. The present theory, with its concomitant approximation of 
dlR, -+ 0, ought to be at  its best in comparison with the Chicago experiments of 
Schwarz et al. (196.1) and Donnelly (1963), for which d l R ,  is smallest. For reasons 
which will be clearer later, after a discussion of the form taken by the motion after 
instability, the present theoretical result that [T ’ (m) - TJT, is about 8 yo (a 
value, furthermore, which is roughly independent of m) cannot necessarily be 
compared with either the 5 yo or the 20 % results of the Chicago group, since the 
former represents experimentally the initiation of some non-axisymmetric mode 
and the latter the completion of its evolution towards the wavy-vortex form. 
Our ‘ slight preference ’ for m = 1 is in accordance with their work. It is felt that 
differences between theory and experiment may be attributable to the use of the 
small-gap approximation and to the neglect of quintic terms. Needless to say, 
it would be of enormous interest and importance to evaluate this statement 
quantitatively. 

We now turn our attention to the form taken by the flow after the Taylor- 
vortex flow becomes unstable (T > T’(m)). According to the simplified model of 
3 5, the new motion is the (stable) wavy-vortex mode I1 (i), described by formulae 

t Such changes in a,, b,, etc., simply lead to rearrangements of the series expansions for 

$, H. A. Snyder and R. B. Lambert (Brown University) have kindly informed us of 
zlCll, etc. 

their related observations of a weak mode with m = 1, 2, or 4 for 7 + 0.96. 
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(5.17). In  the unsimplified mathematical model, the corresponding formulae 
are given by (4.8), while (4.9) gives the azimuthal velocity perturbation from 
laminar Couette flow. A major feature that we wish to emphasize is that the 
boundaries between neighbouring vortices are not plane, because of the presence 
of both sine and cosine terms in the expansions of the velocity components, as 
indicated, for example, by (4.9). Such 'wavy ' boundaries between neighbouring 
cells have been observed by Coles (1965)) by Schwarz et aZ. (1964), and by Nissan 
et al. (1963), so that this amount of qualitative agreement is established. 

There is, however, the embarrassing presence of the ' weak ' mode observed by 
Schwarz et al. (1964) at a Taylor number of 5 yo above critical (z(0)); that mode 
had neighbouring vortices separated by planes. No stable mode of that type has 
been found according to the present theory. It is possible that the lack of waviness 
of the boundaries in the ' weak ' mode of Schwarz et al. (1964) was due to the small- 
ness of the amplitude of the oscillations. To assess this possibility, we consider 
the relevant particle path equations. 

If we go to O(A:) and O(B,) only in the amplitude expansion for u,, the axial 
component of velocity, we obtain 

us = - ( v /2d )  [Acf3,(x)sinhc- 21BJ Ih3,(x)I cosh~coskQ,  

+ A;m,,(x) sin 2hc+ ...I, (6.9) 

where Q, = q5 - ot - X(r)  and ~ ( r )  is a phase factor. Analysis of our computed 
data indicates that, to within a few per cent, Ih3,,1 is approximately f30 = h-lDf2, 
and m31 is approximately Df2,/4h. Thus 

u, - (v/2hd)Df2,[A,sinhc+ $A,2sin2h<- 21Bsl cosh~coskQ,] .  (6.10) 

Assuming that B, is small, the term - 2 lBsl coshccos kQ, in (6.10) will produce 
a small deviation from the cellular boundaries 6 = nn-/h for Taylor vortices. At  
the position of maximum deviation of the cellular boundaries dz will be zero, 
so it follows from the particle-path equations 

(6.11) 

that u, will be zero. Setting c = nn/h + gl and linearizing (6.10) about 5 = nnr/h, 
it is found that at the positions of maximum deviation from planar boundaries 

(6.12) 

and cos kQ, = f 1. From (5.17) we have 

At a Taylor number of 1865, which is within the range of the observed 'weak' 
mode with m = 1, the data of tables 3 and 4 yields 

= (0.07) (1  + ( -  l )m- l (O*l) )  



46 A .  Davey, R. C. Di Prima and J .  T .  Stuart 

approximately. Consequently the percentage deviation of a boundary from plane 
( Z c , )  is about 14 %. Such a change ought to have been observable, but Schwarz 
et al. make no mention of such large deviations in this Taylor number range. 
However, for m = 1 such deviations might not have been so readily noticed, as 
they have been for experiments where larger values of m, of order 4 or greater, 
do occur. Moreover, since, as we shall discuss in the next paragraph, Schwarz 
et al. recorded large variations in cell width at a T of 1937, we can infer that bound- 
ary waviness must have been present for T < 1937. It is possible, therefore, that 
the weak mode can be interpreted as an incipient form of the wavy-vortex mode. 
Our critical value of 8 yo above q ( 0 )  certainly lies within the experimental band 
of 5-20 yo. 

FIGURE 1 

We now turn to a discussion of the cell-width variation. It is clear from equa- 
tion (6.12) that the maximum deviation at  successive boundaries (n = 0 and 
n = 1) is different, as is shown schematically in figure 1, where ell and el,, are 
determined from (6.12) using the plus sign with n = 1 and 0 respectively. The 
difference in the cell width a t  the two extremes is given by 

(6.13) 

Compared to the cell width of the Taylor-vortex, the variation in cell width 
of the wavy vortex, upon substituting for I B,I from the wavy-vortex solution 
(5.17) and using (5.12), is 

(6.14) 

For m = 1, yr is 0.94731 from table 1 and, extrapolating from table 4, we have 
ar-y,s = 0~05approximatelyforIP = 1937. Thuswitha, = - 10,21B,l/n N 4%. 
Dr K. W. Schwarz and Dr B. E. Springett have kindly informed us that the ob- 
servations of figure 7 of Schwarz et al. (1964) correspond to T = 1937; the varia- 
tion of cell width there is 29 yo, so that our value is much too small. The difference 
may be attributable to the fact that the theory has been taken well beyond its 
true range of validity. 

There is another discrepancy between the above picture and the observations 
of Coles (1965, p. 400 and plate 1) who noted 'a marked phase shift for alternate 
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cell boundaries'. The model described immediately above, taken to the order 
shown in (6.10), has the neighbouring cell boundaries in phase. To obtain the 
shift of phase noted by Coles it would be necessary to include other harmonics 
in (6.10), in addition to the term A: retained there; harmonics with q5 dependence 
would, it is believed, be able to effect the shift of phase noted by Coles. To the 
degree to which the present calculations have gone, however, we cannot pursue 
this matter further. 

Turning now to the matter of the torque, we note that, in the small-gap case 
the theoretical results of Davey (1962), to second-order in amplitude, and of 
Reynolds & Potter (1967) to sixth order, over-estimate the torque for the Taylor- 
vortex flow by a large margin when comparison is made with the experiments of 
Donnelly (1958; see Donnelly & Simon 1960) for d/Rl of &. Both Davey and Rey- 
nolds & Potter suggested that the discrepancy could be attributed to the occur- 
rence of the wavy modes. This suggestion is given reinforcement by the fact that 
Davey's torque calculation for the wide-gap case of R, = 2Rl shows much better 
agreement with experiment, than does the small-gap case; and, moreover, the 
wavy-vortex modes of disturbance are known experimentally to occur in the case 
R, = 2Rl only for Taylor numbers of one or two orders of magnitude higher than 
the critical Taylor number of linearized theory.? If we accept this suggestion, 
which at least is a reasonable starting point, we are required to accept, or explain, 
the fact that the theoretically predicted torque is greater than that of experiment, 
with its associated implication that the wavy vortices reduce the torque that 
would occur otherwise. 

For the wavy-vortex flow II(i) ,  it can be inferred from (2 .2) ,  (2.5) and (4.9) 
that the added torque per unit length of this mode (additional to the torque 
associated with the laminar Couette flow V ( r ) ) ,  is 

(6.15) 

where A,  and p, are given by (4.8) andp is the density.$ Substituting for A, and p,, 
the added torque (6.15) can be written in the form 

(6.16) 

where A = Pi( - &)/Pi( - 4). Of the two parts of (6.16), the part proportional to 
( - ao/al) is the torque which would be associated with the Taylor-vortex flow 
(I (i)), if that flow existed as a stable mode at the Taylor number in question. The 
second part, 

(6.17) 

is the excess (or defect, according to sign) of torque over the Taylor-vortex 
value, due to the fact that the stable mode is the wavy-vortex I1 (i). 

Providence, Rhode Island. 
f Private communication of unpublished results from H. Snyder, Brown University, 

$ In deriving (6.15) it is not necessary to  distinguish between R, and R,. 
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The question of whether the latter mode has greater or less torque than I (i) can 
only be resolved by calculation of the factor [A - (a4/a1)]. 

In  the limit k+O described in $ 5 ,  (5 .3)  and (5.4) indicate that [A-(a,/a,)] 
tends to zero. Consequently a more accurate evaluation of A and u,/al is needed. 
The former ( A )  can be evaluated from calculations that we have already per- 
formed; the results are given in table 5. Notice how small the changes in &( - +) 
and A are due to changing rn, which lends some additional support to the use of 
the simplified model discussed in $ 5 .  To evaluate a4/al, a calculation similar to 
that required for the evaluation of b, is necessary; such a calculation has not been 
carried out. Thus we cannot say whether the wavy vortex has greater or less 
torque than the Taylor vortex. Since A > 2,  we can say that A tends to increase the 
torque but this effect could be counteracted if a,/a, were much greater than 2. 

T... 1694.95 1835 
& 7- 

m -E’L(-i) A --I?’(-’-) 3 2  A 
0 4.68700 2 4.71070 2 
1 4.69149 2.0018 4.71609 2.0023 
2 4.70463 2.0074 4.73212 2.0091 
4 4.75091 2.0272 4.79345 2.0351 

TABLE 5. Values of Pj( - 4) and A = Pi( - +)/Pi( - 4.) (8 = 0.05, ,!L = 0, and h = 3.12657). 
Scalingisf,,(O)=l,h~(-+) = 2.8636for T =  1694.95;f0(0) = l ,h;(-&)=2.8537forT= 1835. 

Even if [A - (a4/al)] were known accurately, it could still be argued that quartic 
order terms (At ,  b:, A: p,“) might be of importance, because [A - (a4/al)] is 
itself small. The matter must therefore be left in abeyance for the time being, 
but we note that such a torque calculation would be of great interest.? 

So far we have said little about the physical mechanism of instability. Coles 
(1965, p. 401) has suggested the relevance of mechanisms of general perturbation 
development in rotating fluids, and has given the empirical formula 

(6.18) 

approximately, for the relationship between the critical Taylor number T’(m) of 
the ‘wavy ’ mode, and the critical value q ( 0 )  far the Taylor-vortex flow, and the 
gap ratio d/R,. When d/R,-+ 0 the above formula (6.18) gives T’(m)/T(O) -+ 1 ; 
whereas, on the other hand, the present theory, which is not a strict appli- 
cation of d/R,+ 0 without qualification, gives a non-zero limiting value for 
1 - T,(O)/T’(m). This matter requires further investigation. 

The ideas expressed by Coles also suggest the relevance of ideas of vortex 
breakdown (Benjamin 1962), where ‘critical ’ conditions involve the ratio of a 
swirl velocity to a translational velocity. If a Taylor vortex is regarded as modelled 
by such a theory, with u, as the axial velocity and the pair (uT, u,) as the swirl 

t W. Debler, of the University of Michigan, has recently informed us that his unpub- 
lished experimental work for 7 = 0.95 on the instability of the Taylor-vortex flow indi- 
cates a reduction of torque for the wavy-vortex flow, which apparently is of the Coles’ 
type with m > 3. 
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velocity, a ratio appears like (6.18) but with d/R, replacing R,/d! On the other 
hand (6.18) has some experimental backing, so that vortex-breakdown concepts 
may not be relevant. 

Meyer (1966) has suggested that the instability, which produces the wavy 
vortices, arises from an ‘ Orr-Sommerfeld ’ instability of the ‘ jet-like ’ flow be- 
tween neighbouring vortices (see Snyder & Lambert 1966, figure 9). 

It is possible to give some quantitative backing to Meyer’s idea, and to relate 
it to formula (6.18)) as follows: it is known (Davey 1962) that the azimuthal 
velocity to first order in amplitude is of the form 

u g  = V(r)+A,R,Q,v,(r) C O S ~ &  (6.19) 

where vl ranges between 0 and 1 and 

A: = 0*3257{1- (q/!Z’)}. (6.20) 

Moreover it is known that, in a typical small-gap problem (d/Rl = 0.05))  the 
radial and axial velocity components are much smaller (by an order of magnitude) 
than the perturbation part of (6.19). Let us, therefore, discuss the stability prob- 
lem of the flow (6.19)) regarded as a rectilinear flow, against periodic waves 
travelling in the azimuth. This poses a stability problem of Orr-Sommerfeld 
type, with the added complication that ug depends on two co-ordinates ( r  and g ) .  
Remembering the crucial importance in that theory of inflexion points in the 
velocity profile, and noting that a2us/a<2 has zeros at  a set of values of 5, we may 
reasonably suppose that radial variations are relatively unimportant and there- 
fore approximate (6.19) by a function of g only. Thus we have 

u g  = 3R1 Q1+ &Ae R1 Ql cos A<, (6.21) 

where the mean and perturbation functions of (6.19) have been replaced by ap- 
proximate averages. 

A characteristic Reynolds number (Re) for this flow can be formed from the 
velocity difference associated with (6.21), namely A,R,Q,, and the length d 
(since h - n-). This yields 

Re = A,  R, Q, d/v 
= (0:6) (R, Q,d/v){l - (q/T)}* (6.22) 

approximately by virtue of (6.20). But, in the limit d/Rl+O, we have 

so that (6.22) becomes approximately 

(6.23) 

(6.24) 

where we have approximated T* by 40 because the relevant Taylor numbers are 
close to 1700. Clearly, if we identify T in (6.24) with T‘(m), we have an expression 
of the form of Coles’s (6.18). Furthermore, from Coles’s empirical formula (6.18), 
the critical value of Re against azimuthally-travelling waves is likely to be about 
40, a reasonable value for a flow of the type (6.31). 

4 Fluid Mech. 31 
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An estimate of the magnitude of the wave-numbers involved can be obtained 
as follows. An inviscid, two-dimensional stream-function perturbation to (6.2 1) 
of the form $([) exp {ia(x - ct)], where x is a co-ordinate in the azimuthal direc- 

(6.25) 
tion, must satisfy 

dashes denoting derivatives with respect to [. A neutral solution for the case of 
(6.21) satisfies 

with c = *Rla l .  If the perturbation is required to have the same wavelength 
(2n-/h) along the [-axis as the Taylor vortex (as observed for wavy vortices), we 
have 01 = 0 ,  which gives a long wavelength disturbance in the azimuth. This is 
roughly in accordance with an azimuthal wave-number m which is a small integer 
such as 1 or 4, since this yields a non-dimensional wave-number 01 of order md/R,. 
This is small in the case under consideration, d/Rl + 0. The remarks made above 
are suggestive that Meyer’s hypothesis should be pursued in more detail; it is 
necessary, especially, to justify more completely a study of (6.19) alone and, even 
more so, of (6.21). We shall not take the matter any further here. 

A final point worth making is the following. Since b,/a, is quite different from 
1 for m = 4, it  is possible that b,/a, would be quite different from 3, its limiting 
value when lc + 0. It is possible, therefore, that the deduction we have made, 
that the Taylor-vortex flow is stable against B, perturbations may need to be 
modified. So far we have no additional evidence either way. 

(u@-c)(qY’-O12$)-u;q5 = 0, 

$”+ (P- a”# = 0, 

7. Conclusions 
Subject to four basic assumptions of the model, namely (i) truncation at  

cubic amplitude terms, (ii) application of the small-gap approximation, both in 
the cIassical form and in our estimation of most of the coefficients in the set of 
ordinary differential equations (4. l), (iii) restriction of the number of basic modes 
to four, (iv) cylinders infinitely long, we have reached the following conclusions. 

(a)  The Taylor-vortex flow of a given wavelength is unstable against perturba- 
tions which have the same axial wave-number, but with an axial phase shift of 
&r, and which are also periodic in the azimuth. No instability has been found for 
perturbations with the same axial phase. 

( b )  The critical Taylor number for the instability of the Taylor-vortex flow 
is about 8 % above the critical value for the occurrence of these Taylor vortices, 
T , ( O ) .  The experiments which most closely satisfy the assumptions of the theory 
indicate a value in the range 5-20 %, possibly as low as 5 % if their weak mode is 
to be interpreted as an incipient form of the wavy-vortex mode (but see under 

(c)  The azimuthal wave-number (m) is not accurately determined by the theory, 
but there is a slight preference for m = 1, in agreement with the experiments of 
Schwarz et al. (1964). 

(d  ) For Taylor numbers greater than the critical Taylor number at  which the 
Taylor-vortex flow is unstable a new equilibrium flow with wavy boundaries 
between cells (wavy-vortex), as observed by Coles (1965), Schwarz et al. (1964), 

(d  1)- 
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and others is established. No solution akin to the ‘weak’ non-axisymmetric 
mode with plane cellular boundaries described by Schwarz et al. was found, though 
we have suggested that it may be related to the wavy-vortex mode (see (b)  above 
and $6) .  We note, however, that Schwarz et al. (1964) do not report their observa- 
tions in enough detail for us to make a completely satisfactory evaluation. 

( e )  Whether the torque ofthe wavy-vortex flow is greater or less than the torque 
for the Taylor-vortex flow at the same Taylor number has not been determined. 
Experimental results suggest a reduction. 

( f )  No clear-cut ‘physical ’ description of the instability mechanism for Taylor 
vortex flow has emerged, though an Orr-Sommerfeld type of instability is pos- 
sible. 

(9) In  addition to the emergence of the stable ‘ wavy-vortex ’ flow in a certain 
range of Taylor number, the theory also gives a ‘ spiral mode ’ (I1 (iii), equations 
(4.11) and (5.19)) which has a range of stability, though it cannot be obtained by 
infinitesimal perturbations. Such a mode, representing a spiral pattern rotating 
in the azimuthal direction, has not been observed to the authors’ knowledge. 

The work of A. Davey was done at  the National Physical Laboratory; that of 
R. C. Di Prima was done partly at the Rensselaer Polytechnic Institute, with 
support from the Mechanics Branch of the Office of Naval Research and the Army 
Research Office at Durham, and partly during visits to the National Physical 
Laboratory; the work of J. T. Stuart was done partly at  the Rensselaer Poly- 
technic Institute, with support of the National Science Foundation, and partly 
at  the National Physical Laboratory. We wish to acknowledge our debt to these 
institutions. We also express our thanks to D. Coles, W. Debler, R. J. Donnelly, 
R. B. Lambert, W. C. Reynolds, K. W. Schwarz, L. A. Segel, H. A. Snyder, 
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